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A microwave-pumped XeCl* laser
A. J. Mendelsohn, R. Normandin, S. E. Hams, and J. F. Young
Edward L Ginzton LaboratoryStaMnford University Stanford, California 94305

_i~ved 9 January 1981; accepted for publication 3 February 1981)

A XeCI* excimer laser excited by 2-us-long, 9.375-GHz microwave pulses has been constructed.
Spontaneous emission times of - 500 ns have been observed, while the maximum laser pulse
length was 100 ns. The laser pulse length appears to be limited by the buildup of a transient loss.

PACS numbers: 42.55.Hg, 42.60.By, 52.80.Pi

We have constructed a long-pulse 308-nm XeC* ex- power deposition is nominally independent of gas composi-
cimer laser excited by high-power microwave (9.375 GHz) tion, uniform preionization is not critical, and even a local
pulses. Electron-beam, avalanche-discharge, and electron- breakdown or arc does not prevent effective excitation in
beam-sustained discharge pumped excimer lasers have been other regions of the plasma. In addition, the device is easily
studied extensively- 4 and each have different advantages constructed with high-vacuum, halogen-compatible materi-
and limitations. Microwave pumping retains the practical als. As a result, we have been able to observe spontaneous
simplicity of the avalanche discharge, while avoiding its ex- XeCi* emission for periods of up to 500 ns and to produce
treme sensitivity to discharge conditions. The pulse length 100-ns laser pulses using a very simple apparatus.
and efficiency of avalanche-discharge lasers are limited by A Varian SFD-303 coaxial magnetron and line-type
the formation of plasma arcs, which make it impossible to pulser provides 600-kW, 2-/s-long pulses at 9.375 GHz. The
maintain adequate excitation rates throughout the volume, pulses have a rise time of about 100 ns and travel through - 8
The sensitivity to such factors as detailed gas composition, m of x-band waveguide pressurized with SF, to the active
electrode irregularities, degree and uniformity of preioniza- laser region, illustrated in Fig. 1. The microwave energy is
tion,and the characteristics of the driving source have been coupled from the primary guide into a secondary guide con-
described in detail by Levatter and Lin. ' They note that, taining a concentric 3-mm i.d. quartz tube holding the laser
except for their own work 6 uring high-power x-ray preioni- gas mixture. The gas mixture is slowly recirculated through
zation and very fas rise -thrae drivers, avalanche-discharge an all-stainless-steel closed loop system. Although the mag-
laser pulse lengths ha,,e be-n 'mited to about 10 ns. netron is capable of 400-Hz operation, thermal shock effects

In contrast, microwave excitation of high-pressure gas- combined with our slow flow rates limited operation to 10
es is much less sensitive to the details of the plasma: the Hz. In addition, the recirculating pump limits absolute pres-
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FIG. I. Schematic of the microwave-pumped XeCI* laser. The Brewster _j
windows are CaF and the cavity consists of 2-m-radius mirrors I m apart.

sures to about 2 atm. 2 1 12
The microwave coupler consists of a series of"Riblet OUTPUT COUPLING (%)

Tee" slots,7 which are spaced to provide nearly uniform
transfer of microwave energy from the primary to secondary FIG. 3. Laser pulse width vs output coupling. log-log scales.
waveguide along the 40-cm-long coupling region. Using this
coupler, 80-90% of the energy in the primary guide can neous fluorescence, and laser pulses. The laser pulse length
absorbed in a variety of rare-gas-halogen-buffer gas mix- had a maximum value of 100 ns and was inversely propor-
tures at pressures between I and 3 atm, yielding a power tional to the output coupling (Fig. 3), while the spontaneous
deposition of( 1-2) x l0W W/cm 3 .Once the discharge is initi- emission lasted for over 500 ns. It seems likely that the pulse

ated the power reflected to the source is insignificant, length was limited by a transient loss which built up during

The microwave discharge is more stable and reproduc- the pulse.' Our optimum gas mixture corresponds closely to

ible if it is initiated by a small amount of preionization. This the one given in Ref. 8, which minimizes such transient

is accomplished by placing a - 12-cm- long sealed quartz losses, while it differs considerably from the mixtures nor-

tube containing - 1 Torr of Xe in the secondary guide. This mally used for avalanche-discharge lasers.

low-pressure Xe "flash lamp" breaks down early in the mi- The peak laser output power was only - 20 W with 5%

crowave pulse providing simple, self-timed UV preioniza- output coupling, giving an overall efficiency of less than

tion of the laser mixture. 0.01%. In the present design, however, the efficiency is sig-

Laser action in XeCI* was observed at several wave- nificantly reduced by the small fraction ofthe discharge vol-
lengths centered at 308 nm. The net round-trip gain was just ume which is used by the laser mode. A more useful figure is

over 20% using a mixture consisting of 0.3% Xe, 0.05% the formation efficiency, defined as the ratio of the energy

HCI, and 99.6% Ne at a total pressure of 2 atm. Figure 2 stored in the XeCl* exciplex to the input microwave energy.

shows the relative time behavior of the microwave, sponta- Using the measured 20% gain and the stimulated cros sec-
tion for XeCl*, this is calculated to be 0.2%. The spontane-
ous-emission intensity increases with microwave input pow-
er and total pressure as shown in Fig. 4, indicating a
potential for higher power and efficiency.

MICROWAVE We have demonstrated that microwave pumping is a
POWER simple technique for producing relatively long pulse excimer
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FIG. 2. RAadve tine bmeavior ofthe microwave power, XeCI* spontaneous FIG,4. Intnsty of 30-nm spontaneous emission a a finction of micro-
missio, anl or pubes. wave power and total esum.
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lasers. Such a system may be useful for generating well-con- fice of Scientific Research and the Army Research Office
trolled mode-locked pulses for a high-power amplifier chain, under Contract No. F49620-80-C-0023.
In addition, the microwave pumping scheme lends itself to
applications where long gas lifetimes and hands-off oper- 'R. C. Sze, IEEE J. Quantum Electron. QE-IS, 1338(1979).
ation are required because of the all metal and quartz con- M. Rokni. J. A. Mangano, J. H. Jacob. and J. C. Hsi$ IEEE J. Quantum

Electron. 0&-14.46411979).struction and the absence of eletrodes with their sputtering 'W. L. Nighm,IEEE J. Quantum. Electron. QE14, 71411978).
problems. 'A. V. Eletskii, Soy. Phys. Usp. 21, 502 (1978).
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